Simple Harmonic Motion

Summary and Practice

Definition 1: SHM is a projection of uniform circular motion and is defined by only two quantities:

1. Angular Frequency ω or Period $T=\frac{2 \pi}{\omega}$ or frequency $f=\frac{\omega}{2 \pi}$
2. Amplitude A

Displacement: $d=A \sin (\omega t)$
Velocity:
$v=A \omega \cos (\omega t) \quad$ Velocity leads displacement by $\frac{\pi}{2} \mathrm{rad}$
Acceleration:

$$
a=-A \omega^{2} \sin (\omega t) \quad \text { Acceleration leads velocity by } \frac{\pi}{2} \mathrm{rad}
$$

Phasor diagram

Maximum / Minimum	Central Position	Extreme Position
d	0	A
v	$\mathrm{A} \omega$	0
a	0	$\mathrm{~A} \omega^{2}$

Definition 2: Acceleration (and Force) is proportional to displacement and in opposite direction.

$$
\begin{array}{lc}
\text { restoring acceleration } & a=-\omega^{2} d \\
\text { restoring Force } & F=m a=-m \omega^{2} d
\end{array}
$$

Choice of $t=0$
There always is a phase difference of 90° between displacement, velocity and acceleration.
Check the consequence of $t=0$ in the displacement/time graph
See diagram below (choice A, B, C or D).
This determines the type of function for d, v and $a(\pm \sin$ or $\pm \cos$).

Energy \quad There is a continuous exchange between potential and kinetic energy.
Potential energy can be gravitational and/or elastic.
Kinetic Energy is maximum when velocity is maximum (central position) The sum of Potential and Kinetic Energy is constant.

Exercises

1 Which two quantities fully define a Simple Harmonic Motion?

2 Cross out and complete the following statements:
a Velocity leads / lags displacement by degrees
b Acceleration leads / lags velocity bydegrees

3 A pendulum in a grandfathers clock is adjusted to a length of 2.0 m . The mass is pulled to one side (call that the positive direction) by 3.0 cm and released at $t=0$. The pendulum swings form the start position to the opposite position in 1.0 s .
a What is the amplitude of the motion?
b What is the period (T) of the motion?
c Calculate the angular frequency.
d Sketch the displacement / time graph starting at $\mathrm{t}=0$, showing two complete oscillations. Label both axes.

e Write down the equation that describes the displacement as a function of time.
$f \quad$ Calculate the maximum velocity of the mass. At which position does this occur?
g Calculate the velocity of the mass (with proper sign) at $t=3.5 \mathrm{~s}$.

4 A harbour experiences a tide with an amplitude of 2.3 m and a period of 12 hours.
a Calculate the period (in s) and the angular frequency (in rad s${ }^{-1}$)
b Sketch a displacement / time graph with reference circle, spanning 24 hours.

c Use the reference circle to calculate for how long during each period the water level is 1.5 m above the average level.

