

Simple Harmonic Motion

Summary and Practice

- *Definition 1:* SHM is a projection of uniform circular motion and is defined by only two quantities:
 - **1.** Angular Frequency ω or Period $T = \frac{2\pi}{\omega}$ or frequency $f = \frac{\omega}{2\pi}$
 - 2. Amplitude A

Phasor diagram

Maximum / Minimum	Central Position	Extreme Position
d	0	А
v	Αω	0
а	0	Aω ²

Definition 2: Acceleration (and Force) is proportional to displacement and in opposite direction. restoring acceleration $a = -\omega^2 d$ restoring Force $F = ma = -m\omega^2 d$

Choice of t = 0

There always is a phase difference of 90° between displacement, velocity and acceleration. Check the consequence of t = 0 in the displacement/time graph See diagram below (choice A, B, C or D). This determines the type of function for d, v and a (± sin or ± cos).

EnergyThere is a continuous exchange between potential and kinetic energy.
Potential energy can be gravitational and/or elastic.
Kinetic Energy is maximum when velocity is maximum (central position)
The sum of Potential and Kinetic Energy is constant.

Exercises

- 1 Which two quantities fully define a Simple Harmonic Motion?
- 2 Cross out and complete the following statements:
 - a Velocity leads / lags displacement by degrees
 - b Acceleration leads / lags velocity bydegrees
- 3 A pendulum in a grandfathers clock is adjusted to a length of 2.0 m. The mass is pulled to one side (call that the positive direction) by 3.0 cm and released at t = 0. The pendulum swings form the start position to the opposite position in 1.0 s.
 - a What is the amplitude of the motion?
 - b What is the period (T) of the motion?
 - c Calculate the angular frequency.
 - d Sketch the displacement / time graph starting at t = 0, showing two complete oscillations. Label both axes.

- e Write down the equation that describes the displacement as a function of time.
- f Calculate the maximum velocity of the mass. At which position does this occur?
- g Calculate the velocity of the mass (with proper sign) at t = 3.5 s.

- 4 A harbour experiences a tide with an amplitude of 2.3 m and a period of 12 hours.
 - a Calculate the period (in s) and the angular frequency (in rad s⁻¹)
 - b Sketch a displacement / time graph with reference circle, spanning 24 hours.

c Use the reference circle to calculate for how long during each period the water level is 1.5 m above the average level.