Nפg \Unetu ス̃esources

Physics Year 13 (NCEA Level 3)

Alternating Current

Summary

In AC the Voltage (and Current) oscillate up and down in SHM.
$V=V_{\max } \sin (\omega t) \quad \omega$ is angular frequency of the supply ($\mathrm{rad} \mathrm{s}^{-1}$)
where $\omega=2 \pi f \quad f$ is the frequency of the supply (Hz)

To convert AC to DC it must be rectified. Diodes are commonly used because they conduct only in one direction.
Single diode: Half wave rectifier
Rectifier bridge (4 diodes): Full wave rectifier.
Ripples can be smoothed by large capacitor across the output.

RMS Voltage is defined as the DC voltage which produces the same power as AC with a peak voltage $V_{p e a k}=\sqrt{2} \times V_{R M S}$. Similarly for Current: $I_{\text {peak }}=\sqrt{2} \times I_{R M S}$

In an AC circuit:
Voltage and Current across a Resistor are in phase
Voltage across a Capacitor lags Resistor Voltage (and Current) by 90 degrees
Voltage across an Inductor leads Resistor Voltage (and Current) by 90 degr.

Reactance of a Capacitor and an Inductor are dependent on frequency:
Capacitor: $\quad X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi f C} \quad$ easily conducts high frequency (small reactance)
Inductor: $\quad X_{L}=\omega L=2 \pi f L \quad$ easily conducts low frequency (small reactance)
AC filter in audio electronics uses these properties
(Tweeter across Inductor; Woofer across Capacitor)

Phasor diagrams to illustrate Voltages and Reactance's:
Supply Voltage is vector sum of voltages across components
Circuit Impedance is vector sum of Reactance's of components
In RLC-circuit this means addition of three vectors.

Resonance Frequency when reactance of capacitor is equal the reactance of $X_{C}=\frac{1}{\omega C}=\omega L=X_{L}$ or $\omega=\frac{1}{\sqrt{L C}}$.
Then Impedance $=$ resistance of resistor.
Hence current is maximum.

This principle is used in a radio receiver, metal detector, etc.

Reactance's

