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Calculus Year 13 (Level 8) 
 

Differential Equations 
 
 

 
So far we have done mathematics with functions like ( )y f x  which could describe any practical 

situation we want to investigate. However many problems in real life (sciences, engineering, etc.) 
cannot be expressed in this way. In those cases we can only describe how a process changes rather 
than what the process itself looks like exactly. In mathematics we use differential equations (DE's) to 
describe and solve those situations. 

A differential equation involves derivatives. 5
dy

x
dx

   for example is a differential equation. It is a 

first-order DE because only the first derivative appears. (There are also second-order DE's such as 
2

2
3 2 0

d y dy
y

dx dx
   ). Going back to the first equation, it describes a curve with a gradient in any 

point equal to the x-value plus 5. The only way to solve an equation like this is to integrate. This will 
produce an unknown constant of integration so we can predict that a DE in general does not have 
one unique solution. Therefore we need boundary conditions to uniquely solve a DE. This will be 
explained with a number of typical examples. 
 
GEOMETRIC PROBLEM 
This example doesn't yet show you real life applications but we give this first to explain the 
procedure. 

Let's take the example above:  5
dy

x
dx

   

 
 
 
Step 1  Separate variables: 

You can treat the differential 
dy

dx
 as an ordinary fraction as we have done before. Separate y 

and x  by re-arranging to ( 5)dy x dx  . All parts containing y are on the left and all parts 

containing x are on the right. 
 

 
Step 2  Integrate both sides.  

We integrate the left hand side to y and the right hand side to x , so ( 5)dy x dx    or 

2

1 2

1
5

2
y c x x c    . We can take both integration constants together and write 

21
5

2
y x x C   . We have obtained a family of curves all satisfying the original DE. If you 

differentiate this general solution you obtain the original DE. (Verify this). But we cannot use 
this solution because we don't know the value of the constant C. 
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Step 3  Find the constant from a boundary condition. 
An example of a boundary condition could be that we know one point of the function. E.g. 

the curve passes through the point (-4,-1). Substituting gives 
1

1 16 5 4
2

C       or 

20 8 1 11C     . Hence this particular solution to the DE is 
21

5 11
2

y x x    

Hint: Illustrate this example yourself using Graphmatica. First type the DE in the form : 5dy x   

In this way Graphmatica understands this is a DE and it will display the general form of this family of 

parabola's. Now plot the specific result 
21

5 11
2

y x x    and you will see that this parabola 

follows the general pattern (it is a member of the family) and also passes through the point (-4,-1). 
 
Now let's go into "real life" problems. 
 
A BOAT MOVING THROUGH WATER. 
 
The engine of a boat provides a thrust force of 2000 N. The water causes a resistance force in 

opposite direction of 100v  where v is the speed of the boat. (This is close to physical reality: that 
resistance is a linear function of the speed). The mass of the boat is 1000 kg. A fundamental law of 

physics states that under the influence of a force F an object of mass m accelerates as 
dv F

dt m
  

(usually written as F ma ). Using the values given we obtain: 
2000 100

2 0.1
1000

dv v
v

dt


    This is 

a DE describing how the speed changes with time.  
Let us follow the 3 step approach: 
 
Step 1  Separate variables: 

1

2 0.1
dv dt

v



 

Step 2  Integrate both sides.  

1

2 0.1
dv dt

v


   or 
ln 2 0.1

0.1

v
t C


 


 or  ln 2 0.1 0.1 lnv t K    (we 

converted the constant C into K by defining ln 0.1K C ) Often we obtain a 
logarithm when we integrate a DE and we can eliminate this by taking the e-function 

on both sides: 0.1 ln 0.1 ln 0.12 0.1 t K t K tv e e e Ke        . Make v subject: 
0.10.1 2 tv Ke   or 0.120 10 tv Ke  . K is arbitrary so we can simplify this with a 

new constant ( 10A K ) to 
0.120 tv Ae  .  

 
We used a bit of algebra here but this is the simplest form to describe the speed as a 
function of time. It is the solution of the original DE but we still have the unknown 
constant A. 

 
Step 3  Find the constant from a boundary condition. 

We define the speed 0v  at 0t  . Substitute this in the solution: 
00 20 20Ae A     Hence 20A  and we obtain the unique solution: 
0.120(1 )tv e  . 
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We can calculate the speed of the boat at any time t, e.g. at 5t   the speed is 
0.520(1 ) 7.87v e   . 

Another interesting observation we can make is that when t   the term 0.1 0te   and thus the 

speed 20v . This is the maximum speed the boat can reach and is called Terminal Velocity. Note 
that the terminal velocity is independent of the constant A in the general solution. 
This example also applies to a falling object in air such as a skydiver, etc. 
 
 
POPULATION GROWTH 
We define the size of a population (people living in a certain area, bacteria in a Petri dish, etc.) as a 
function of time as ( )x x t . The assumption is that the growth of the population is linearly 

dependent on the size of the population. This can be expressed as 
dx

kx
dt

  where k is a constant. 

This is a DE which we can solve with the 3 step approach: 
Step 1  Separate variables: 

1
dx kdt

x
  

Step 2  Integrate both sides.  

1
dx kdt

x
   or ln x kt c  . Now take the e-function on both sides as we did 

before: 
ln x kt c kt c kte e e e Ae    (we converted the constant to simplify) or 

ktx Ae  
This is the general DE with an unknown constant A describing the population size at 
any given time t.  
(Note that we have two constants here: A is the integration constant and k the 
"model" constant relating growth to population size. If we want to find both we need 
two boundary conditions.). 
 

Step 3  Find the constants from a boundary condition. 
Suppose that we observe that the population doubles in 50 years (with bacteria this 

would go much faster). Translated into mathematics this means that if at 0t   the 

population size is 0x  then at 50t   02x x . So we can write 0

0x Ae A   and 

50 50

0 02 k kx Ae x e   or 50 2ke   hence 50 ln2k   or 
ln 2

0.01386
50

k   . So the 

specific solution for the population size is 
0.01386

0( ) tx t x e  where t is expressed in 

years. So we have found k and we know that 0A x  is the population size at 0t  . 

 
We can now predict how the population will develop, e.g. when has the population 

trebled? Then 0.01386

0 03 tx x e  hence 0.01386 3te   and 
ln3

79.248
0.01386

t    year. 

Unfortunately there is nothing like a "Terminal Population size" here. If t increases 
the growth is exponential and could best be described as a "runaway process". 

 
A similar type of solution as above is applied in physics for e.g. radio-active decay (decreasing 
population size) and the charging or dis-charging of a capacitor. That is why these phenomena are 
often described with e-functions. 
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NEWTON'S LAW OF COOLING 
States that the rate of cooling of a hot body is proportional to the temperature difference between 

its temperature and that of the surroundings. Hence 0( )
dT

k T T
dt

    where T is temperature and t 

is time. 0T  is the ambient temperature which usually is known. We have again a DE describing a 

physical situation. 
 
Step 1  Separate variables: 

0

dT
kdt

T T
 


 

 
Step 2  Integrate both sides.  

0

dT
kdt

T T
 

   or 0ln K T T kt    (we put the integration constant K in the 

logarithm) or 0

ktT T Ae   (we defined another constant 
1

A
K

 ) or 

0

ktT T Ae   A is the general constant and k is the proportionality constant that 

we usually don't know either. So in this case we need two conditions to find a unique 
solution.  
 

Step 3  Find the constant from a boundary condition. 

If 0 20T  and we know the temperature at 0t   e.g. 70T   then 
070 20 20Ae A     or 50A . 

As a second condition we might observe that at 5t   40T  . Then 

540 20 50 ke   hence 5 40 20
0.4

50

ke


   and 
ln0.4

0.183
5

k  


. 

The specific solution describing this situation is thus 
0.18320 50 tT e  . This allows 

us to calculate the temperature at any time t. 
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SOLVED PROBLEMS 
 

1. The velocity v (ms-1) of a skydiver increases according to the DE    9.81 0.182
dv

v
dt

   where 

9.81 is the acceleration due to gravity and 0.182 gives the effect of air resistance ( t  is time in 
s). 

 
a. Solve the DE (i.e. find an expression for v as a function of time) 
b. Find the velocity of the skydiver 5 seconds after jumping from a stationary balloon. 
c. Determine the terminal velocity (limit of v when t  ) 

 
2. You invest $1000 with the RFC (Reliable Finance Company). It offers an interest rate of 16% 

per annum compounded continuously, i.e. If A  is the total amount of money in dollars 

which accumulates after t  years, then  0.16
dA

A
dt

  

a. Find an expression for A  as a function of t . 
b. What is the total amount after two years 
c. In how many years will the amount total $10,000 
 

3. The size y  of a population of whales can be shown to satisfy the DE  0.05 50000
dy

y
dt

   

where t  is time. The initial population is 1,100,000. Find the size of the population after 10 
years. 

 

4. Newton's law of cooling states that 0( )
dT

k T T
dt

    where 0T  is the ambient temperature 

and T  is the temperature of a cooling object at time t . k  is a constant. This formula is also 
used in forensic analysis to estimate the time of death of a person. 

 
The problem is as follows: Police arrive at a murder scene at 10:56 p.m. and measure the 
temperature of the victim's body to be 31o C. One hour later the temperature has dropped to 
30o C. The room temperature where the body was found is 22o C. The normal body 
temperature of a living person is 37o C. 
Calculate the time of death. 

 
5. A room of 200 m3 contains air with a concentration of 0.2% CO2 . Fresh air containing 0.05% 

CO2 is pumped in at a rate of 50 m3 per minute. 
Calculate the concentration of CO2 after 5 minutes. (Hint: define x(t) is the amount of pure 
CO2 in m3 at time t). 
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ANSWERS 
 

1.  

a. 9.81 0.182
dv

v
dt

    or  
9.81 0.182

dv
dt

v


    or  
ln 9.81 0.182

0.182

v
t c


 


  or  

0.1829.81 0.182 tv Ae    thus  
0.182

0.1829.81
53.9

0.182

t
tAe

v Ke



   . 

At 0 0t v    hence 53.9K    and  
0.18253.9(1 )tv e   

b. At  5t    0.182 553.9(1 ) 32.2v e     ms-1  

c. For  t    53.9v  ms-1  
 

2.   

a. 0.16
dA

A
dt

   or  
0.16

dA
dt

A
    or  

ln 0.16

0.16

A
t c    or  ln 0.16 0.16A t C    

or  0.160.16 tA ke   or  0.16tA Ke .  At  0t    1000A   thus  1000K    and   
0.161000 tA e  

b. At  2t    0.16 21000 $1377.13A e    

c. 0.1610000 1000 te   or  0.16 10te    and thus  
ln10

14.39
0.16

t    years 

 

3.  0.05 50000
dy

y
dt

    or  
0.05 50000

dy
dt

y


    or  
ln 0.05 50000

0.05

y
t c


    or  

0.050.05 50000 ty Ce    or  
0.05

6 0.0550000
10

0.05

t
tCe

y We


   .  At  0t    61.1 10y     

hence  510W    and  
5 0.0510 (10 )ty e   

At  10t    5 0.510 (10 ) 1,164,872y e    

 

4. First solve the DE: 
0

dT
kdt

T T
 

    or  0ln ( )K T T kt    or  0( ) ktK T T e   or  

0

ktT T Ae   where A  is another constant.  

We know that at 
56

10:56 10 10.9333
60

t      31T   

And                 at 
56

11:56 11 11.9333
60

t     30T   

Hence 10.933331 22 9 kAe      and  11.933330 22 8 kAe     
Taking the logarithm on both sides and re-arranging gives: 

10.9333 ln9 lnk A      and similarly we have 

11.9333 ln8 lnk A     

Subtracting gives  ln9 ln8 0.1178k     and substituting this in the first expression gives 

ln ln9 0.1178 10.9333A     or  32.6279A . At the time of death the body 

temperature was 37o  C and thus  0.117837 22 15 32.6279 te     or  

0.1178 15
0.4597

32.6279

te    and 
ln0.4597

6.5969
0.1178

t  


  or  6:36  p.m. 
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5. Let x denote the amount of CO2 (in m3 ) at any time t, the concentration then being 

1
100%

200 2

x
x   The amount of CO2  pumped in per minute is 

0.05
50

100
  m3 . The amount 

leaving per minute is 

1

250
100

x
  m3 .Hence the change in amount of CO2 is 

1
0.05 250 50
100 100

x
dx      or  (0.025 )

4

x
dx dt    Now solve this DE: 

(0.025 )
4

dx
dt

x



    or  40.025

4

t
x

Ce


    or  40.100
t

x Ke


  . At 0t   the 

concentration is 0.2% hence 
0.2

(0) 200 0.4
100

x     so 0.4 0.1 K   or 0.3K   thus 

the solution is  40.100 0.3
t

x e


  .  At 5t    
5

40.100 0.3 0.186x e


    m3 . And the 

concentration is then  
0.186

100% 0.093%
200

  .  And the "terminal" concentration? When 

t    then 0.100x  and the concentration 
0.100

100% 0.05%
200

  . This is what we 

would expect, isn't it? 
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