

Calculus Year 13 (NCEA Level 3)

Summary 5

Differentiation

Finding Limits

Calculator $\lim_{x\to 0} x\cos x = 0$ Try values for x close to zero

Direct Substitution $\lim_{x\to 8} (3x+2) = 26$

Algebraic Cancellation (eliminate common factors)

$$\lim_{x \to 5} \frac{x^2 + x - 30}{x^2 - 9x + 20} = \lim_{x \to 5} \frac{(x - 5)(x + 6)}{(x - 5)(x - 4)} = \lim_{x \to 5} \frac{x + 6}{x - 4} = \frac{11}{1} = 11$$

Limits as $x \rightarrow \infty$ Divide each term by the highest power of x

$$\lim_{x \to \infty} \frac{x+3}{3x^2-1} = \lim_{x \to \infty} \frac{\frac{x^2}{x^2} + \frac{3}{x^2}}{\frac{3x^2}{x^2} - \frac{1}{x^2}} = \lim_{x \to \infty} \frac{1 + \frac{3}{x^2}}{3 - \frac{1}{x^2}} = \frac{1}{3}$$

A limit does not exist at a point when the function value is different when approaching the point from below or from above. This includes vertical asymptotes.

Continuity Draw a graph of the function without lifting the pen **A function is dis-continuous** at "holes", jumps and asymptotes.

Differentiability Graph of the function is smooth and continuous. A function is not-differentiable at dis-continuities and "sharp corners".

Differentiation from first principles

Solve
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Example:
$$f(x) = x^2 + 2$$
 Then $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 + 2 - (x^2 + 2)}{h} = \lim_{h \to 0} \frac{x^2 + 2hx + h^2 + 2 - x^2 - 2}{h} = \lim_{h \to 0} 2x + h = 2x$

Differentiation of Polynomials

 $y = ax^{n} \text{ then } y' = a.n.x^{n-1}$ Chain Rule for composite functions y = f(g(x)) then y' = f'(g(x)).g'(x)Example: $y = (5x-7)^{3}$ then $y' = 3(5x-7)^{2}.5 = 15(5x-7)^{2}$ Product Rule y = f.g then y' = f'.g + f.g'Example: $y = 2x^{2}(3x+1)$ then $y' = 4x(3x+1) + 2x^{2}.3 = 12x^{2} + 4x + 6x^{2} = 18x^{2} + 4x$ Quotient Rule $y = \frac{f}{g}$ then $y' = \frac{f'.g - f.g'}{g^{2}}$ Example: $y = \frac{8x-1}{x^{3}+1}$ then $y' = \frac{8(x^{3}+1)-(8x-1).3x^{2}}{(x^{3}+1)^{2}} = \frac{8x^{3}+8-24x^{3}+3x^{2}}{(x^{3}+1)^{2}} = \frac{-16x^{3}+3x^{2}+8}{(x^{3}+1)^{2}}$

Differentiation of Functions

Exponential Function $y = e^x$ (>0 for all x) then $y' = e^x$

Definition of Logarithm $^{10}\log 100 = 2$ because $10^2 = 100$ (10 is the base)

We will use **In** which has the number *e* as base $e^{t} \ln(e^{x}) \equiv x$.

In words: the logarithm of a number is the power to which you must raise the base to obtain the number.

Properties of Logarithm

 $\ln(a.b) = \ln a + \ln b \text{ (change product into sum)}$ $\ln\left(\frac{a}{b}\right) = \ln a - \ln b \text{ (change quotient into difference)}$ $\ln(a^n) = n.\ln a \text{ (change power into product)}$

Differentiation of Logarithm

$$y = \ln x$$
 then $y' = \frac{1}{x}$

Trig Functions

$$y = \sin x \qquad y' = \cos x$$

$$y = \cos x \qquad y' = -\sin x$$

$$y = \tan x \qquad y' = \frac{1}{\cos^2 x} = \sec^2 x$$

Combine all these with Chain Rule, Product Rule and/or Quotient Rule where necessary.

Geometric Properties of Differentiation

y = f(x) First Derivative y' = f'(x) defines value of gradient of f(x) at each point. Example: $y = x^2 - 5x + 4$ then y' = 2x - 5At the point (3,-2) the gradient is $2 \cdot 3 - 5 = 1$ Equation of the Tangent $y - y_1 = m(x - x_1)$ hence $y - (-2) = 1 \cdot (x - 3)$ or y = x - 5Equation of the Normal Same procedure but gradient is inverse reciprocal: $m_{normal} = -\frac{1}{m_{transent}}$

Implicit Differentiation

y is an implicit function of x when it cannot be expressed explicitly in the form y = f(x)Example: $2x^2y + 3xy^2 = 16$

Differentiate this as (using Chain and Product Rule): $4xy + 2x^2 \frac{dy}{dx} + 3y^2 + 3x \cdot 2y \frac{dy}{dx} = 0$ Now make $\frac{dy}{dx}$ subject: $(2x^2 + 6xy)\frac{dy}{dx} = -4xy - 3y^2$ Hence $\frac{dy}{dx} = \frac{-4xy - 3y^2}{2x^2 + 6xy}$

Stationary Points

See separate hand-out Stationary Points