Calculus Year 13 (NCEA Level 3)

Summary 5

Differentiation

Finding Limits

Calculator $\operatorname{Lim}_{x \rightarrow 0} x \cos x=0$ Try values for x close to zero
Direct Substitution $\operatorname{Lim}_{x \rightarrow 8}(3 x+2)=26$
Algebraic Cancellation (eliminate common factors)

$$
\operatorname{Lim}_{x \rightarrow 5} \frac{x^{2}+x-30}{x^{2}-9 x+20}=\operatorname{Lim}_{x \rightarrow 5} \frac{(x-5)(x+6)}{(x-5)(x-4)}=\operatorname{Lim}_{x \rightarrow 5} \frac{x+6}{x-4}=\frac{11}{1}=11
$$

Limits as $x \rightarrow \infty$ Divide each term by the highest power of x

$$
\operatorname{Lim}_{x \rightarrow \infty} \frac{x+3}{3 x^{2}-1}=\operatorname{Lim}_{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{2}}+\frac{3}{x^{2}}}{\frac{3 x^{2}}{x^{2}}-\frac{1}{x^{2}}}=\operatorname{Lim}_{x \rightarrow \infty} \frac{1+\frac{3}{x^{2}}}{3-\frac{1}{x^{2}}}=\frac{1}{3}
$$

A limit does not exist at a point when the function value is different when approaching the point from below or from above. This includes vertical asymptotes.

Continuity
Draw a graph of the function without lifting the pen
A function is dis-continuous at "holes", jumps and asymptotes.

Differentiability Graph of the function is smooth and continuous.
A function is not-differentiable at dis-continuities and "sharp corners".

Differentiation from first principles

Solve $f^{\prime}(x)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Example: $f(x)=x^{2}+2$ Then $f^{\prime}(x)=\operatorname{Lim}_{h \rightarrow 0} \frac{(x+h)^{2}+2-\left(x^{2}+2\right)}{h}=$

$$
\operatorname{Lim}_{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}+2-x^{2}-2}{h}=\operatorname{Lim}_{h \rightarrow 0} 2 x+h=2 x
$$

Differentiation of Polynomials

$y=a x^{n}$ then $y^{\prime}=a . n \cdot x^{n-1}$
Chain Rule for composite functions $y=f(g(x))$ then $y^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
Example: $y=(5 x-7)^{3}$ then $y^{\prime}=3(5 x-7)^{2} .5=15(5 x-7)^{2}$
Product Rule $y=f . g$ then $y^{\prime}=f^{\prime} . g+f . g^{\prime}$
Example: $y=2 x^{2}(3 x+1)$ then $y^{\prime}=4 x(3 x+1)+2 x^{2} \cdot 3=12 x^{2}+4 x+6 x^{2}=18 x^{2}+4 x$
Quotient Rule $y=\frac{f}{g}$ then $y^{\prime}=\frac{f^{\prime} \cdot g-f . g^{\prime}}{g^{2}}$
Example: $y=\frac{8 x-1}{x^{3}+1}$ then

$$
y^{\prime}=\frac{8\left(x^{3}+1\right)-(8 x-1) \cdot 3 x^{2}}{\left(x^{3}+1\right)^{2}}=\frac{8 x^{3}+8-24 x^{3}+3 x^{2}}{\left(x^{3}+1\right)^{2}}=\frac{-16 x^{3}+3 x^{2}+8}{\left(x^{3}+1\right)^{2}}
$$

Differentiation of Functions

Exponential Function $y=e^{x}(>0$ for all $x)$ then $y^{\prime}=e^{x}$
Definition of Logarithm ${ }^{10} \log 100=2$ because $10^{2}=100$ (10 is the base)
We will use \ln which has the number e as base ${ }^{e} \ln \left(e^{x}\right) \equiv x$.
In words: the logarithm of a number is the power to which you must raise the base to obtain the number.

Properties of Logarithm

$\ln (a . b)=\ln a+\ln b$ (change product into sum)
$\ln \left(\frac{a}{b}\right)=\ln a-\ln b$ (change quotient into difference)
$\ln \left(a^{n}\right)=n \cdot \ln a$ (change power into product)

Differentiation of Logarithm

$$
y=\ln x \text { then } y^{\prime}=\frac{1}{x}
$$

Trig Functions

$$
\begin{array}{ll}
y=\sin x & y^{\prime}=\cos x \\
y=\cos x & y^{\prime}=-\sin x \\
y=\tan x & y^{\prime}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{array}
$$

Combine all these with Chain Rule, Product Rule and/or Quotient Rule where necessary.

Geometric Properties of Differentiation

$y=f(x)$ First Derivative $y^{\prime}=f^{\prime}(x)$ defines value of gradient of $f(x)$ at each point.
Example: $y=x^{2}-5 x+4$ then $y^{\prime}=2 x-5$
At the point $(3,-2)$ the gradient is $2.3-5=1$
Equation of the Tangent
$y-y_{1}=m\left(x-x_{1}\right)$ hence $y-(-2)=1 .(x-3)$ or $y=x-5$
Equation of the Normal
Same procedure but gradient is inverse reciprocal: $m_{\text {normal }}=-\frac{1}{m_{\text {tangent }}}$

Implicit Differentiation

y is an implicit function of x when it cannot be expressed explicitly in the form $y=f(x)$
Example: $2 x^{2} y+3 x y^{2}=16$
Differentiate this as (using Chain and Product Rule): $4 x y+2 x^{2} \frac{d y}{d x}+3 y^{2}+3 x .2 y \frac{d y}{d x}=0$
Now make $\frac{d y}{d x}$ subject: $\left(2 x^{2}+6 x y\right) \frac{d y}{d x}=-4 x y-3 y^{2}$ Hence $\frac{d y}{d x}=\frac{-4 x y-3 y^{2}}{2 x^{2}+6 x y}$

Stationary Points

See separate hand-out Stationary Points

