

Calculus Year 13 (Level 8)

Summary 3

Geometry

Line

EQUATION y = mx + c with gradient $m = \tan \theta$ where θ is the angle with the x-axis

One point (x_1, y_1) and gradient m are given $\rightarrow Y - y_1 = m(X - x_1)$

TWO POINTS
$$(x_1, y_1), (x_2, y_2)$$
 are given $\Rightarrow \frac{Y - y_1}{X - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$

MIDPOINT of the line
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

ANGLE between two lines $\tan\theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ with special cases

parallel if $m_{\!\scriptscriptstyle 1}=m_{\!\scriptscriptstyle 2}$ hence $\tan\theta=0$

Perpendicular if $m_1m_2=1$ or $m_1=-\frac{1}{m_2}$ hence $\tan\theta$ is undefined

Distance between two points (length of the line) $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Locus

is set of all points (X,Y) satisfying a certain condition, e.g.

CIRCLE is locus of all points at distance r from the centre (a,b) hence $r = \sqrt{(X-a)^2 + (Y-b)^2}$

Translation

of a graph by vector
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 \rightarrow substitute $x-a$ for x and $y-b$ for b

Example a circle through the origin (0,0) is $r = \sqrt{X^2 + Y^2}$

when translated by
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 becomes $r = \sqrt{(X-a)^2 + (Y-b)^2}$

ngawhetu.com 1