Calculus Year 13 (Level 8)

Summary 3

Geometry

Line

EQUATION $\quad y=m x+c$ with gradient $m=\tan \theta$ where θ is the angle with the x-axis
One point $\left(x_{1}, y_{1}\right)$ and GRadient m are given $\rightarrow Y-y_{1}=m\left(X-x_{1}\right)$
TWO POINTS $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are given $\rightarrow \frac{Y-y_{1}}{X-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
MIDPOINT of the line $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
ANGLE between two lines $\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$ with special cases
PARALLEL if $m_{1}=m_{2}$ hence $\tan \theta=0$
Perpendicular if $m_{1} m_{2}=1$ or $m_{1}=-\frac{1}{m_{2}}$ hence $\tan \theta$ is undefined
DISTANCE between two points (length of the line) $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Locus

is set of all points (X, Y) satisfying a certain condition, e.g.
CIRCLE is locus of all points at distance r from the centre (a, b) hence $r=\sqrt{(X-a)^{2}+(Y-b)^{2}}$

Translation

of a graph by vector $\binom{a}{b} \rightarrow$ substitute $x-a$ for x and $y-b$ for b
Example a circle through the origin $(0,0)$ is $r=\sqrt{X^{2}+Y^{2}}$
when translated by $\binom{a}{b}$ becomes $r=\sqrt{(X-a)^{2}+(Y-b)^{2}}$

